
Irreversible structural relaxation in amorphous Pd82Si18: a two-level-systems analysis

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 1425

(http://iopscience.iop.org/0953-8984/2/6/003)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 21:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/6
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 1425-1434. Printed in the UK 
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Received 17 October 1989 

Abstract. Kinetic analysis of experimental results shows that an independent two-level- 
systems (ns )  model can account for the effects of irreversible structural relaxation on the 
electrical resistance of Pd8&, provided that a broad spectrum of activation energies of the 
TLSS is invoked. Using Eyring’s theory of the rates of chemical reaction, we show that the 
real TLS transition attempt frequency v o  is up to two orders of magnitude less than the 
apparent attempt frequency v and that v o  is much lower than a typical Debye frequency. 

1. Introduction 

Structural relaxation is a change in the short-range order of the atomic structure of a 
metallic glass brought about by heating. It is perhaps most clearly observed when a 
metallic glass is annealed isothermally, well below its crystallisation temperature; once 
the anneal temperature has been reached, any physical property changes seen are the 
effects of structural relaxation. These changes are typically of order 1% in magnitude 
and they can take several days to occur. 

Many recent studies have sought to elucidate the microscopic nature of structural 
relaxation. Methods range from direct measurements of changes in atomic structure 
factors due to annealing (Dini et a1 1986) to theoretical studies of the thermodynamics 
of flow in metallic glasses (Spaepen 1977). Many experimenters have chosen to record 
changes in some physical property of a metallic glass, such as its length (Sinning et al 
1985) or its electrical resistance (Kelton and Spaepen 1984) during structural relaxation. 

Previously (Hygate and Gibbs 1989) we compared the effects of structural relaxation 
on the resistance of PdVSi glasses with the effects of hydrostatic compression. Our 
results were consistent with the idea that irreversible structural relaxation is a slow 
densification of the metallic glass. 

Here we present new measurements of changes in the electrical resistance of amorph- 
ous Pd82Si18 during isothermal anneals over a range of temperatures. By analysing the 
kinetics of these changes, we have begun to characterise the atomic rearrangements 
through which structural relaxation takes place. 
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Figure 1. Fractional resistance change in Pd,,Si,,. 

2. Experimental results 

We annealed short pieces of amorphous PdS2Sil8 in a furnace with large thermal mass 
and monitored the electrical resistance in situ; our experimental technique has been 
described in an earlier publication (Hygate and Gibbs 1989). We used a DC, four-point 
method and took care to avoid spurious contributions from drift and from thermal emfs. 
We arranged the geometry of the samples such that any crystallisation around the spot- 
welded potential contacts could not affect the result. 

The resistance of as-received samples of PdS2Sil8 was monitored during isothermal 
annealing treatments at five different temperatures TA. A typical annealing time was 5 
hours. In each case the temperature, measured by a small thermocouple touching the 
sample, rose from ambient to within 1 K of TA in about twenty minutes, with negligible 
overshoot. This long warming-up time was due to the high thermal mass of the sample 
holder, chosen to provide a stable final temperature. It is not obvious what point, on 
such a long warming curve, to mark as the beginning of the isothermal anneal; clearly 
the moment at which TA is first attained is too late and the beginning of the heating ramp 
is too soon. We discuss this problem in section 4 below, and set out there a method for 
calculating the effective starting time to from a given heating curve T(t). 

Figure 1 shows resistance changes in as-received Pd82Si18 during isothermal anneals 
at 425K, 460 K, 484 K, 502 K and 526 K. The horizontal axis is kTA ln(t - to), where t 
and to,  the effective starting time calculated as described in section 4, are in seconds and 
where k is Boltzmann’s constant. The vertical axis is the fractional resistance change 
AR/Ro, where AR = R - Ro and Ro is an estimate of what the resistance of the as- 
received sample would be if it were heated rapidly to temperature TA without undergoing 
structural relaxation. This estimate was obtained by extrapolating the results of a 
separate study of isostructural temperature-dependence of resistance; in this study 
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Displacement Figure 2. Two-level-system parameters. 

(Hygate and Gibbs 1989), we fitted a quadratic function R , ( T )  to measurements of 
the resistance and temperature of each alloy in boiling liquid nitrogen and at three 
temperatures spread over the range 0 "C to 150 "C. 

The resistance change is always negative. Its magnitude, for a given value of 
kTA ln(t - to), is always greater at higher annealing temperatures. 

The horizontal line in figure 1 is a line of constant A R / R , ,  chosen such that it intersects 
four out of the five experimental curves. The abscissae of the four points of intersection 
are recorded in table 1 and will be used in the analysis which follows. 

3. Two-level-systems model of structural relaxation 

In the activation energy spectrum model (AES) of Gibbs et a1 (1983), it is proposed that 
structural relaxation comprises many independent microscopic events. Each event is 
modelled as a thermally activated process in thermal contact with a reservoir of heat at 
temperature T ,  the temperature of the metallic glass. The kinetics of structural change 
is modelled in AES by assuming that these processes are distributed continuously in 
activation energy; a broad activation energy spectrum would explain the log-time kin- 
etics often observed in isothermal anneals while supporting the intuitive notion that 
there must be a wide range of local environments in a glassy structure. 

We have shown (Hygate and Gibbs 1987) that the thermally activated processes of 
AES must be treated as two-level systems (TLSS) if the model is to account for reversibility. 
(Figure 2 defines the activation energy E l  and the relaxation energy A E  of a general 
TLS.) In particular, we showed that only those TLSS with a relaxation energy A E  of 
approximate magnitude kTA or less can contribute anything to reversible change. Gibbs 
et a1 (1983) considered only those TLSS with A E  9 k T A .  

The remainder, and usually the majority, of the processes, with A E  + kT,, make 
only one, irreversible contribution to structural relaxation when the glass, in its as- 
received state, is first annealed. The kinetics of both reversible and irreversible change 
are determined by the distribution of the TLSS over E l .  Reversibility proved to be a very 
small effect in these experiments (Hygate and Gibbs 1989) so we can regard the resistance 
changes of figure 1 as almost entirely irreversible. By analysing the kinetics of these 
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changes, we can expect to find out about the activation energy spectrum of all those TLSS 
with A E  + kT,. 

We can therefore set A E  S kTA in the TLS kinetic equations, leaving us with the AES 
expression for a generalised change Ap in some physical propertyp during an isothermal 
anneal: 

Ap(t> = jm c(E,)q(E,)Oo(R1, TA, t> d E ,  (1) 
- m  

where q(E,) is the number density of TLSS with respect to El and c(El) couples all the 
TLSS with a certain activation energy E ,  to changes in the physical property p ( t ) ,  in this 
case electrical resistance. The kinetic function Oo(E1, T, t )  is defined by 

Oo(El, T, t )  = 1 - exp(-vtexp(-E,/kT,)). (2) 
Our method in this analysis will be to simulate Ap(t) by inserting a plausible form for 
c(E,)q(E,) into equation (1). Before this can be attempted, two mathematical tasks 
remain. The first, calculating the origin in time of each set of results, arose in section 2. 
The second is the determination of v ,  the attempt frequency occurring in the function 
Oo(E1, TA, t). 

4. An algorithm for determining the origin in time 

The problem of determining the origin in time of an isothermal annealing treatment 
arises because real anneals are never truly isothermal; the change from room tem- 
perature TR to the anneal temperature TA always takes a significant amount of time 
because the metallic glass and its holder must have an appreciable thermal mass if the 
temperature is to remain stable during the anneal. 

We wish to find to such that, once the anneal temperature has been attained, the 
effects of the real thermal treatment are the same as the effects of a truly isothermal 
anneal beginning at to. We therefore equate the function Oo(El, TA, t )  with a generalised 
form Oo(E1, T, t )  valid for time-dependent T: 

1 - exp[-v(t - t o )  exp(-El/kTA)] = 1 - exp (-. j;m exP(-E,/kT(t)) di) (3) 

where t is  a dummy variable of integration. Equation (3) is to be valid for all t greater 
than t,, where t ,  is the time at which the anneal temperature TA is attained. Simplifying, 
we find for to the expression 

to = t - exp(E,/kT,) 1' exp( -E,/kT(i)) dt. 
-a 

The lower limit of integration can be changed from the generally valid value of --CO to 
zero, provided that there is no contribution to the integral when t < 0. This is permissible 
if we start the experimental clock at t = 0 before heating the sample. The upper limit of 
integration, t ,  can be replaced by t,, since by definition the integrand is identically zero 
once the temperature TA has been attained. With these changes in the limits, the 
expression for to simplifies further to 

to = exp(E,/kTA) [exp(-El/kTA) - exp(-El/kT(t))] dt. (4) Iof 
It is apparent from equation (4) that to depends not only on the function T(t) but also on 
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Table 1. Points of constant AR/Ro in figure 1. 

425 
460 
484 
502 
526 

- 
0.418 
0.403 
0.348 
0.323 

E,. Thus in principle a unique to cannot be calculated from T ( t )  alone on this basis; 
however, the dependence of to on El  is weak, as will be demonstrated shortly. 

( T A  - T(t))/TA and applying the binomial expansion to the denomi- 
nators of the exponents in equation (4) produces a more efficient algorithm: 

Writing x(t) 

( 5 )  

which we used in generating values of to for the data of figure 1. We took E l  = 1.5 eV; 
we found that varying E l  between 1 and 2 eV changed the computed value of to by only 
about 500 s. We showed algebraically (Hygate 1988) and by numerical trials that no 
significant improvement in accuracy is attained by taking more than three terms in x in 
the exponent of equation (4). 

5. Determination of Y ;  a test of the TLS model 

It has been assumed in AES analyses (e.g. Gibbs et a1 1983) that all the TLSS have the same 
attempt frequency v ;  the data of figure 1 can be used to test this assumption. 

We can represent 60(E1, T ,  t) approximately by a step function of E l  at Eo = 
kTA In v(t - to). In this approximation, all the relaxation processes with E l  6 Eo have 
already occurred and all those with El > Eo have yet to occur at timet; the step function 
sweeps along the E1-axis, and any given value of AR/Ro  corresponds to a single value 
of Eo. The line of constant AR/Ro  in figure 1 intersects four of the experimental curves 
at the values of kT,  ln(t - to) given in table 1. These four points of intersection there- 
fore correspond to the same value of Eo. Since Eo is given in each case by Eo = 
kTA In v(t - to), we predict that 

kTA h ( t  - to) = Eo - ( k  In ~ ) T A  (6) 

where Eo is a constant, making kTA ln(t - to) a linear function of TA. 
To test this prediction, we have plotted the data of table 1 on a graph of kTA ln(t - to) 
versus TA (figure 3). The best straight line through the four points yields the value 

v = 1.2 x 108 s-1. 

Since the four points do not suggest curvature in either direction, we can conclude the 
AES model has passed this experimental test, within the limits set by random error in the 
data. These limits were estimated by drawing lines (shown dashed) of maximum and 
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minimum gradient through the four points in figure 3 and calculating v from the gradient 
of each, This procedure yields for the limits on v :  

The interpretation of v will be discussed in section 7. 
6 x lo6 s-' < v < 4 X lo9 s - '  

6. Activation energy spectrum 

Using the best value, 1.2 X 10, s-l, of v , we can plot all five sets of data on a single graph 
of A R / R ~  versus kTA In v ( t  - to) (figure 4). Only points representing temperatures 
within 1 K of TA are included; a single straight line fits all of these satisfactorily, within 
an error limit of +/- 0.05% in AR/Ro. We learn nothing about the activation energy 
spectrum below about 1 .O eV or above about 1.45 eV from these experiments, but over 
the range 1.0 eV 3 E ,  > 1.45 eV, we can deduce that it does not vary with El. 

This can be demonstrated using the step-function approximation to eo in equation 
(1) with c(E,)q(E,) = A ,  a constant for 1.0 eV < El < 1.45 eV: 

k T A I n ( f - - f g )  

AP(t) = A 1 d E ,  + B  
1 OeV 

where B is a constant determined by the behaviour of c(E,)q(E,) when El  < 1.0 eV. 
Hence, 

Ap(t) = A(kTA In v(t  - to) - 1.0 ev) + B. (7) 
Equation (7) describes the straight line of figure 4 well and allows us to extract the value 
of the constant A. We find that 

A = - 1.8 x eV-' (1 eV < T1 S 1.4eV). 
In summary: the irreversible structural relaxation of Pd,,Si,, is an example of log time 
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Figure 4. Fractional resistance change as a function of k'f, I n  v( t  - to). Here v takes the 
value 1.2 x l ogs .  

kinetics and can therefore be described by a constant weighted number density of TLSS 
in El over the range 1 eV < El G 1.4 eV. 

7. The attempt frequency v 

The relaxation time t of a relaxation process is given in the AES model by 

where v o  is the frequency of attempts to jump from state 1 to state 2,  and p ( E l )  is the 
probability that the jump, once attempted, will be successful. Gibbs et a1 (1983) took 

l/t = VoP(E1) (8) 

p(E1) = exp(-E,/kT). (9) 
This holds if the relaxation process can adequately be represented as a quantum simple- 
harmonic oscillator (QSHO) with semi-classical frequency vo. The energy levels of the 
microstates of a QSHO are given by 

and the probability that the QSHO will be in state n with energy E, greater than some 
value E is given by 

En = (n  + i ) h v o  (n = 0 ,  1 , 2 .  . .) (10) 

m cc -1 

p ( E ,  > E )  = exp(-E/kT) i = n  2 exp[-(E, - E ) / k T ]  (E i =  1 exp(-Ei/kT)) (11) 

which can be reduced to equation (9) by noting that Ei - E, = Ei-, and by cancelling 
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the two series term by term. This step is possible only because successive energy levels 
of a QSHO are equally spaced, a property peculiar both to the one-dimensionality and to 
the harmonicity of equation (10). In general, and in three dimensions, we expect the 
density of states to be a strong function of energy rather than a constant, and therefore 
we cannot expect equation (10) to apply. 

To rework the argument with a generalised density of states soon becomes intrac- 
table, but a way forward here can be found in the chemical rate theory of Eyring (1935). 
This theory, proposed originally to account for observations of the rates of chemical 
reactions in the gaseous phase, is based on the idea of equilibrium between the initial 
state of a reaction and a higher-energy ‘activated state’ or ‘activated complex’. 

Figure 5 pictures the activated state for the migration of a single atom from one 
position of local equilibrium to another. En route from its initial position (dashed circle) 
to a new position, the mobile atom, shown shaded, finds itself at a saddle, in potential 
energy. It is stable with respect to small displacements along the line X2X2,  as it was to 
displacements along the line XIXl in its initial state, but along YY,  the potential energy 
is a maximum in the activated state. In Eyring’s theory, the probability that the jump 
will occur is calculated from the equilibrium constant of the reversible change between 
initial and activated states. The stability of the activated state with respect to oscillations 
along X2X2 tilts the equilibrium in favour of the formation of the activated complex, 
making the jump more likely that it would otherwise have seemed. 

This essential ingredient of the kinetic description of any relaxation event is clearly 
missing from the QSHO analysis. Equation (9) is therefore incorrect and we can now 
modify it using Eyring’s theory. 

Eyring treated the initial and activated states as macrostates, each comprising many 
microstates. The equivalent of equation (11) is 

P(En > E )  = exp(-E/kT) J m  g2(E2) exp(--E2/kT) dE2 
0 

x (lom g1(€1) exp( -E , /W dE , )  

wheregl(El) andgz(E2) are the densities of microstates in the initial and activated states, 
respectively, El  being measured from the local energy minimum and E2 froln the saddle 
point. Waldram (1985, p 216) has restated this conclusion as follows: 

p(Ei  > E )  = (a*/ao)  exp( - E / k T )  

where a* , oo represent the widths of the one-dimensional potential wellsX,X1 and X2X2 
respectively. If the curvature of the potential surface along X 2 X z  is less than that along 
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Figure 6 .  Potential energy of the process of 
figure 5.  

XIXl (as sketched in figure 6), then U* > U' and the probability of the relaxation event 
occurring will be higher than otherwise expected. If U* = U', we have equation (9). 

The next step is to estimate the magnitude of this effect in a real metallic glass. Wert 
and Zener (1949), in a study of interstitial atomic diffusion coefficients in crystalline 
metals, point out that the strain energy of the solid is increased when the diffusing atom 
is in the activated state. Drawing on the theoretical work of Zener (1949), who found 
that an increase in strain energy results in a lowering of the overall tensile and shear 
moduli, they conclude that (T* > U' (our notation). Therefore the probability of a 
diffusive event is always increased by the Eyring correction; a lower bound on u*/uo is 
1. Wert and Zener estimate an upper bound of about 100 on u*/uo by comparing the 
strain imposed during an atomic jump with the strain produced in a static measurement 
of the shear modulus, which they determine experimentally, in a variety of metal- 
interstitial combinations. 

We can incorporate these findings into the AES model by rewriting equation (8) 

l/t = v exp(-E/kT) 

where 

v = vo(u*/uO). 

We now expect the apparent attempt frequency v to be between 1 and 100 times greater 
than the real attempt frequency vo. The range of values of v derived in section 5 therefore 
implies that v o  lies in the range 

6 x lo4 s-' < v,, < 4 x lo9  s - l .  

This attempt frequency is, at most, many orders of magnitude smaller than a typical 
Debye frequency (about lo1* s-'). 
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8. Conclusion 

In the two-level-system model, a metallic glass is seen as a collection of independent 
oscillators in thermal contact with a reservoir of heat at temperature T. As Tis raised, 
the amplitudes of these elementary oscillations increase and the oscillators with the 
lowest potential barriers begin to jump into lower energy states: this is irreversible 
relaxation. 

However, these oscillators need not be single atoms as pictured in section 7 .  We have 
found that the attempt frequency v o  of these oscillations is much lower than the Debye 
frequency, which pertains to the oscillationsof asingle atom about itsmean position. This 
suggests that the irreversible relaxation we have observed is the result of configurational 
changes in large groups of atoms, vibrating collectively. 
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